U6213 DATA SHEET

UNI-SEMICONDUCTOR CO., LTD 宇力 半 导体 有限公司

U6213 Data Sheet

V 1.1

版权归宇力半导体有限公司

Features

Input voltage:2.5V~6.5V

 Output range:1.0V~3.6V (customized by every 0.1V step)

 Maximum output current: 300mA @ VIN-VOUT=0.5V

PSRR: 75dB @1KHz

Dropout voltage:220mV @ IOUT=200mA

Quiescent current: 50µA Typ.

Shut-down current: <1μA

Recommend capacitor:1µF

Ultra Low Output Noise:20µVRMS

Applications

MP3/MP4 Players

Cellphones, radiophone, digital cameras

Bluetooth, wireless handsets

Others portable electronics device

General Description

The U6213 is a high accuracy, low noise, high speed, low dropout CMOS Linear regulator with high ripple rejection and fast discharge function. The devices offer a new level of cost effective performance in cellular phones, laptop and notebook computers, and other portable devices.

U6213 can provide product selections of output value in the range of 1.0V~3.6V by every

0.1V step.

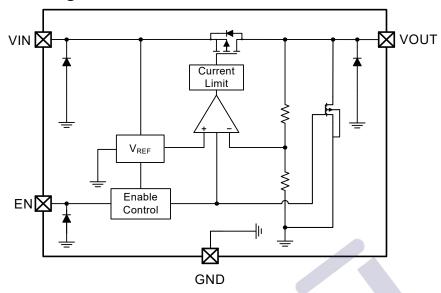
The current limiter's fold-back circuit also operates as a short circuit protection and an output current limiter at the output pin.

The U6213 regulators are available in standard SOT23-5L and DFN1 \times 1-4 packages. Standard products are Pb-free and Halogen-free.

Selection Table

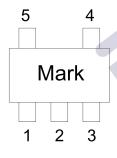
Part No.	Package	Temperature	Tape & Reel
U6213-XXM5G	SOT23-5L	-40 ~ +85℃	3000/REEL
U6213-XXFCG	DFN1×1—4	-40 ~ +85℃	10000/REEL

Note: XX indicates 1.0V~3.3V by 0.1V step. For example, 28 means product outputs 2.8V

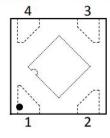

Order Information

U6213-112

Designator	Description
	Voltage version:
	XX: 1.0V~3.6V by 0.1V step
	Example:
	28: 2.8V
	Package:
2	M5G: SOT23-5L
	FCG:DFN1×1—4



Block Diagram


Pin Assignment

SOT23-5 (Top View)

PIN NO	SYMBOL	1/0	DESCRIPTTION	
SOT23-5L	STIVIBUL			
1	VIN	Power	Input	
2	GND Ground Ground		Ground	
3	EN	-	Enable(Active high, not floating)	
4	NC	/	Not connected	
5	VOUT	0	Output	

DFN1x1-4L (Top View)

PIN NO	SYMBOL	I/O	DESCRIPTTION	
DFN1×1—4	STWIDOL	1/0		
1	VOUT	0	Output	
2	GND	Ground	Ground	
3	CE	I	Enable(Active high, not floating)	
4	VIN	Power	Input	

Absolute Maximum Ratings

Input Voltage0.3V to	8V Storage Temperature55°C to 150°C
Output Current300mA	Package Lead Soldering Temperature260 $^{\circ}\mathrm{C}$
Operating Temperature40°C to 8	Junction Temperature40 $^{\circ}$ C to 125 $^{\circ}$
Ambient Temperature40°C to 8	${\mathbb C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit	
θ _{JA}	Thermal Resistance (Junction to Ambient)	SOT23-5	500	°C/W	
JA	(Assume no ambient airflow, no heat sink)	DFN1×1—4	250	C/W	
В		SOT23-5	0.30		
P _D	Power Dissipation	DFN1×1—4	0.60	W	

Note: P_D is measured at Ta= 25 $^{\circ}$ C

Electrical Characteristics

The following specifications apply for V_{OUT} =2.8V, T_A =25 $^{\circ}$ C, unless specified otherwise

SYMBOL	ITEMS	CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input Voltage				6.5	V
V_{OUT}	Output Range	$V_{OUT} < 2V V_{IN} = 2.7V, I_{OUT} = 1 \text{mA}$	-3	V _{OUT}	V _{OUT} 3	
V OU I	Output Kange	$V_{OUT} \geqslant 2V, I_{OUT}=1mA$ -2 V_{OUT} 2		2	/0	
I_Q	Quiescent Current	V _{OUT} =2.8V, I _{OUT} =0		50		μΑ
I_{LIMIT}	Current Limit	$V_{IN} = V_{EN} = 4.5V$		300		mA
V	Duamant Valtaga	V _{OUT} =2.8V, I _{OUT} =200mA		220	250	m V
V_{DROP}	Dropout Voltage	V _{OUT} =2.8V, I _{OUT} =300mA		320	350	mV
$\triangle V_{LINE}$	Line Regulation	$V_{IN}=2.7\sim5.5V, I_{OUT}=1mA$		0.01	0.15	%/V
$\triangle V_{LOAD}$	Load Regulation	V _{OUT} =2.8V, I _{OUT} =1~300mA		40	70	mV
I _{SHORT}	Short Current	$V_{EN}=V_{IN}$, V_{OUT} Short to GND with 1 Ω		80		mA
I _{SHDN}	Shut-down Current	V _{EN} =0V			1	μΑ
DCDD	Power Supply Rejection	V_{IN} =5 V_{DC} +0.5 V_{P-P} F=1KHz, I_{OUT} =10mA		75		1D
PSRR	Rate	V_{IN} =5 V_{DC} +0.5 V_{P-P} F=1MHz, I_{OUT} =10mA		55		dB
V _{ENH}	EN logic high voltage	V _{IN} =5.5V, I _{OUT} =1mA	1.2		V _{IN}	V
V _{ENL}	EN logic low voltage	$V_{IN}=5.5V$, $V_{OUT}=0V$			0.4	V
I_{EN}	EN Input Current	$V_{EN}=0$ to 5.5V			1	μА
e _{NO}	Output Noise Voltage	10Hz to 100KHz, C _{OUT} =1 μ F		20		μ V_{RMS}

Application Information INPUT CAPACITOR

An input capacitor of ≥ 1.0µF is required between the VIN and GND pin. This capacitor must be located within 1cm distance from VIN pin and connected to a clear ground. A ceramic capacitor is recommended although a good quality tantalum or film may be used at the input. However, a tantalum capacitor can suffer catastrophic failures due to surge current when connected to a low impedance power supply (such as a battery or a very large capacitor).

There is no requirement for the ESR on the input capacitor, but the tolerance and temperature coefficient must be considered in order to ensure the capacitor work within the operation range over the full range of temperature and operating conditions.

OUTPUT CAPACITOR

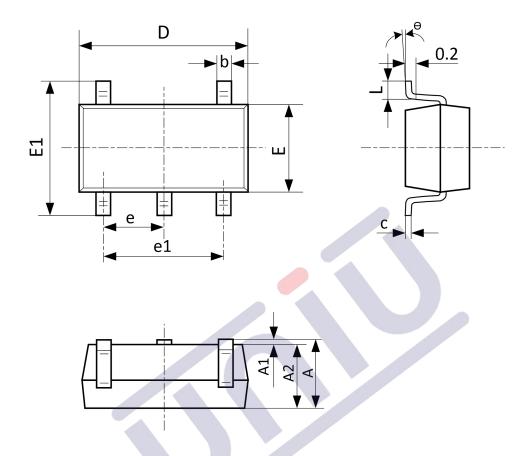
In applications, it is important to select the output capacitor to keep in stable operation. The output capacitor must meet all the requirements the following specified in recommended table over capacitor conditions in applications. The minimum capacitance for stability and correct operation is 0.6µF. The capacitance tolerance should be ±30% or better over the operation temperature range. The recommended capacitor type is X7R meet the full device temperature specification.

The capacitor application conditions also include DC-bias, frequency and temperature. Unstable operation will result if the capacitance

drops below minimum specified value (see the next section Capacitor Characteristics).

The U6213 is designed to work with very small ceramic output capacitors. A 1.0 μ F capacitor (X7R type) with ESR type between 0 and 400m Ω is suitable in the applications. X5R capacitors may be used but have a narrow temperature range. With these and other capacitor types (Y5V, Z6U) that may be used, selection relies on the range of operating conditions and temperature range for a specified application. It may also be possible to use tantalum or film capacitors at the output, but these are not as good for reasons of size and cost. It is also recommended that the output capacitor be located within 1cm from the output pin and return to a clean ground wire.

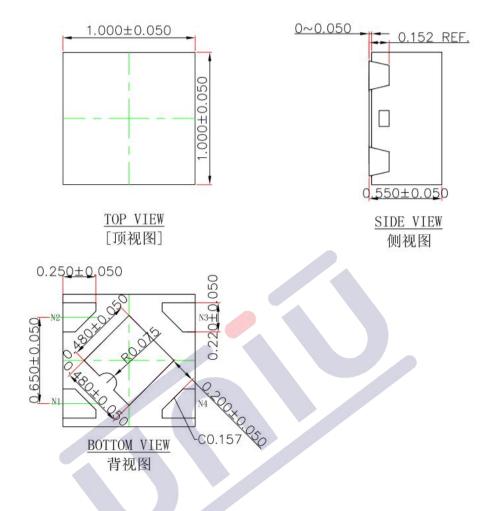
NO-LOAD STABILITY


The U6213 will remain stable and in regulation with no external load. This is especially important in CMOSRAM keep-alive applications.

ON/OFF INPUT OPERATION

The U6213 is turned off by pulling the EN pin low, and turned on by pulling it high. If this function is not used, the VEN pin should be tied to VIN to keep the regulator output on at all time. To assure proper operation, the signal source used to drive the VEN input must be able to swing above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under VIL and VIH.

Package Information SOT23-5 Outline Dimensions



Complete L	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	0.950(BSC)		(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0℃	8℃	0℃	8℃	

U6213

DFN1×1-4 Outline Dimensions

1.版本记录

DATE	REV.	DESCRIPTION
2019/04/11	1.0	首次发布
2022/03/13	1.1	布局调整

2、免责声明

浙江宇力微新能源科技有限公司保留对本文档的更改和解释权力,不另行通知!

客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。量产方案需使用方自行验证并自担所有批量风险责任。未经我司授权,该文件不得私自复制和修改。

产品不断提升,以追求高品质、稳定性强、可靠性高、环保、节能、高效为目标,我司将竭诚为客户提供性价比高的系统开发方案、技术支持等更优秀的服务。

版权所有 浙江宇力微新能源科技有限公司/绍兴宇力半导体有限公司

3、联系我们

浙江宇力微新能源科技有限公司

总部地址: 绍兴市越城区斗门街道袍渎路25号中节能科创园45幢4/5楼

电话: 0575-85087896 (研发部)

传真: 0575-88125157

E-mail:htw@uni-semic.com

无锡地址: 江苏省无锡市锡山区先锋中路6号中国电子(无锡)数字芯城1#综合楼503室

电话:0510-85297939

E-mail:zh@uni-semic.com

深圳地址:深圳市宝安区西乡街道南昌社区宝源路泳辉国际商务大厦410

电话: 0755-84510976

E-mail:htw@uni-semic.com

